RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College affiliated to University of Calcutta)

SECOND YEAR [BATCH 2014-17] B.A./B.Sc. FOURTH SEMESTER (January – June) 2016 Mid-Semester Examination, March 2016

Date : 17/03/2016

MATHEMATICS (Honours)

Time : 11 am – 1 pm

Paper : IV

Full Marks : 50

[5×3]

[2×5]

[1+4]

[Use a separate Answer Book for each group]

<u>Group – A</u>

1. Answer <u>any five</u> questions :

a) Suppose $\mathcal{P}(\mathbb{N})$ denotes the power set of \mathbb{N} and consider the metric 'd'on $\mathcal{P}(\mathbb{N})$ defined by

 $d(A,B) = \begin{cases} 0, A \Delta B = \phi \\ \frac{1}{m}, m \text{ is the least element of } A \Delta B \end{cases}$

Find diameter of the set $\{\{1,2\},\{1,2,3\},\{1,2,6\},\{1,2,7\}\}$.

b) Verify completeness of the metric spaces (\mathbb{N}, d_1) and (\mathbb{N}, d_2) where $d_1(x, y) = |x - y|$; $x, y \in \mathbb{N}$

and
$$d_2(x, y) = \left| \frac{1}{x} - \frac{1}{y} \right|; x, y \in \mathbb{N}$$

- c) Which one of the following sets are G_{δ} in \mathbb{R} ? Justify your answer. (i) (0,1) (ii) [0,1] and (iii) (0,1].
- d) Let A be an uncountable set in \mathbb{R} . Prove that A has a subset which is not closed in \mathbb{R} .
- e) Prove that the union of two bounded sets in a metric space is also bounded. Use it to show that a Cauchy sequence in a metric space is bounded.
- f) Describe all Cauchy sequences in (\mathbb{Q}, d_1) and (\mathbb{Q}, d_2) where d_1 , d_2 are defined by $d_1(x, y) = |x - y|; x, y \in \mathbb{Q}$ and $d_2(x, y) = \begin{cases} 1, x \neq y \\ 0, x = y \end{cases}; x, y \in \mathbb{Q}.$
- g) Prove that the metric space ℓ_{∞} is not separable.

2. Answer <u>any two</u> questions :

- a) State and prove Cauchy criterion for uniform convergence of a sequence of function.
- b) i) If a sequence of continuous function $\{f_n\}$ is uniformly convergent to a function f on $D \subset \mathbb{R}$, prove that f is also continuous on D.
 - ii) Let $f: \mathbb{R} \to \mathbb{R}$ be uniformly continuous on \mathbb{R} . For each natural number n, let $f_n(x) = f\left(x + \frac{1}{n}\right), x \in \mathbb{R}$. Prove that the sequence $\{f_n\}$ in uniformly convergent on \mathbb{R} .
- c) Prove that $\{f_n\}$ is uniformly convergent on [a,b] to f if and only if $\lim_{n \to \infty} M_n = 0$ where $M_n = \sup_{x \in [a,b]} |f_n(x) - f(x)|$. Examine uniform convergence of $\{f_n\}$ on [0,1] where $f_n(x) = nx(1-x)^n$, for all $x \in [0,1]$. [2+3]
- d) For each $n \in \mathbb{N}$, $f_n(x) = \frac{x}{1 + nx^2}$, $x \in [0,1]$. Show that $\{f_n\}$ converges uniformly on [0,1]. Show that a sequence of bounded functions convergent uniformly to a bounded function. [2+3]

<u>Group – B</u>

3. Answer <u>any two</u> questions :

a) Prove that the locus of the extremity of the polar subtangent of the curve $\frac{1}{r} + f(\theta) = 0$ is

$$\frac{1}{r} = f'\left(\frac{\pi}{2} + \theta\right)$$

- b) The curve $r = ae^{\theta \cot \alpha}$ cuts any radius vector in the consecutive points $P_1, P_2, ..., P_n, P_{n+1}, ...$ If ρ_n denotes the radius of curvature at P_n , prove that $\frac{1}{m-n} \ln \left(\frac{\rho_m}{\rho_n} \right)$ is constant for all integral values of m and n.
- c) Find the asymptotes of the curve : $x^3 x^2y xy^2 + y^3 + 2x^2 4y^2 + 2xy + x + y + 1 = 0$.

4. Answer <u>any three</u> questions :

- a) Solve $x \frac{d^2y}{dx^2} (x+2)\frac{dy}{dx} + 2y = x^3e^x$ after the determination of a solution of its reduced equation.
- b) Find the eigen-values and eigen-functions of $\frac{d}{dx}\left(x\frac{dy}{dx}\right) + \frac{\lambda}{x}y = 0$; $y'(1) = 0 = y'(e^{2\pi})$ where $\lambda > 0$.
- c) Solve the system of simultaneous equations $\frac{dx}{dt} + 4x + 3y = t$; $\frac{dy}{dt} + 2x + 5y = e^t$.
- d) Solve: $\frac{dx}{x^2 + a^2} = \frac{dy}{xy az} = \frac{dz}{xz + ay}$.
- e) Find f(y) such that the total differential $\frac{yz+z}{x}dx zdy + f(y)dz = 0$ is integrable. Hence solve it.

_____ × _____

[3×5]